
An empirical study on the use of CSS preprocessors

Davood Mazinanian, Nikolaos Tsantalis

Department of Computer Science and Software Engineering

Concordia University

Montreal, Canada

Email: {d_mazina, tsantalis}@cse.concordia.ca

Abstract—Cascading Style Sheets (CSS) is the standard lan-
guage for styling structured documents, such as HTML. How-
ever, CSS lacks most of the traditional programming constructs,
including variables and functions, which enable code reuse and
structured programming. Alternatively, CSS Preprocessors (e.g.,
LESS, SASS) have been introduced as superset languages to
extend CSS by supporting those missing constructs. While these
languages are being widely used by developers, we do not have
sufficient knowledge about how developers take advantage of
the features they provide. Gaining this knowledge is crucial for
providing better tool support to the developer community by
devising techniques for the automatic migration of existing CSS
code to take advantage of CSS Preprocessor language features,
designing refactoring recommendation systems for existing Pre-
processor code, and giving insights to the Preprocessor language
designers for improving language usability. In this paper, we have
empirically investigated the CSS Preprocessor codebase of 150
websites regarding four preprocessor features, namely variables,
nested selectors, mixins and extend constructs, and report the
discovered usage patterns for each feature. We also discuss how
the gained knowledge can be put into practice towards improving
the development and maintenance of CSS preprocessor code.

I. INTRODUCTION

Cascading Style Sheets (henceforth, CSS) is the standard

language used for defining the look and feel of structured

documents, for instance HTML and XML documents [1].

Surveys show that over 90% of the web developers use CSS in

their everyday development tasks [2], and more than 90% of

the websites are using CSS in their technology portfolio [3].

More recently, CSS started being adopted in the design of

desktop applications (e.g., using WinJS), as well as mobile

applications (e.g., using PhoneGap), extending its use in a

wide spectrum of application domains.

CSS code is applied on some target documents, most

usually, HTML documents. As it can be observed in Figure 1,

CSS has a very simple syntax. Every CSS file (i.e., Style

Sheet) contains a list of CSS rules in the form of one or

more CSS selectors. A selector specifies which elements of

the target documents should be styled (e.g., selector p selects

all paragraphs in an HTML document). Inside the body of a

selector there are one or more style declarations, which apply

some style values (e.g., red) to some style properties (e.g.,

color) of the selected elements.

The simplicity of the CSS syntax has historical roots.

CSS was initially designed for web designers with limited

programming experience [4]. Consequently, it lacks many of

the fundamental programming constructs, such as variables,

��������	
�

������
�
�
��
������
������

�

Fig. 1. CSS Syntax

functions, loops and conditionals, which enable the reuse

of code and structured programming. Therefore, maintaining

CSS code can be a very difficult task.

A direct consequence of this lack of programming features

is that CSS developers are prone to copying style declarations

from one selector to another (i.e., code cloning). Although

there is some limited built-in CSS support for minimizing

duplication (such as grouping selectors sharing common dec-

larations), there is still a considerable amount of duplicated

code in the CSS code transferred to the end-users of websites.

In a previous work, we examined the CSS code of 38 high

traffic websites and we found that, on average, more than 60%

of the CSS declarations were duplicated across at least two

selectors [5].

CSS preprocessor languages were introduced by the in-

dustry as a response to the missing features of CSS. The

code written in a CSS preprocessor can include variable

and function declarations, which can be used inside CSS

selectors. The preprocessor compiler essentially transforms

(i.e., transpiles) the function calls and variable uses to pure

CSS. Currently, there is a long list of CSS preprocessors

offering very similar features with a different syntax (e.g., HSS

[6], SASS [7], LESS [8], Google Closure StyleSheets [9]), and

their use is becoming a fast growing trend in the industry.

An online survey with more than 13,000 responses from web

developers, conducted by a famous website focusing on CSS

development, showed that around 54% of web developers use

a CSS preprocessor in their development tasks [10]. United

States Federal Government advises front-end web developers

who design websites for government services to use SASS

as their Style Sheet development language in order to get

“resources such as frameworks, libraries, tutorials, and a

comprehensive styleguide as support” [11].

While CSS preprocessors are popular among developers

and they include several useful features, we do not have

enough knowledge about how developers take advantage of

these features in real web applications. Having such informa-

tion can be useful for different reasons:

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.18

168

• A considerable number of web developers is still coding di-

rectly in pure CSS. Therefore, migrating existing CSS code

to take advantage of preprocessor features (e.g., extracting

duplicated declarations to a function in a CSS preprocessor)

is greatly demanded in the industry. Knowing the practices

applied by web developers when coding in preprocessors

will certainly help in developing more useful and efficient

migration strategies.

• CSS preprocessors might be sub-optimally used, because

web developers miss opportunities to further eliminate ex-

isting duplicated code and other bad practices. Therefore,

there is a need for refactoring recommendation systems

to help developers in improving the quality of their CSS

preprocessor code. Knowing developers’ practices will help

in prioritizing the refactoring opportunities leading to the

most commonly used solutions/patterns.

• Finally, the knowledge of developers’ practices can also

guide the CSS preprocessor language designers to revisit the

design of these languages, e.g., by adding support for new

features (which are currently implemented by developers in

an ad-hoc manner), or making existing features easier to use,

or eliminating features that are not adopted by developers.

These reasons motivate us for conducting the first empirical

study on the use of CSS preprocessors. We have analyzed the

preprocessor code of 150 websites, having their CSS code

written in LESS or SASS. We focused on these two prepro-

cessors because, according to the results of an online survey

[10], LESS and SASS are the most popular CSS preprocessors

among web developers (92% of the developers who used a

CSS preprocessor in their careers, preferred either LESS or

SASS). Additionally, to achieve more generalizable results, we

analyzed Style Sheets written using both of the two dialects

that SASS provides: 1) The initial syntax of SASS, which is

closer to Python (decreases development effort by removing

braces and commas, and relying on the indentation to show

code blocks and nesting); and 2) The so-called SCSS syntax,

which is more similar to the syntax of pure CSS. We selected

50 websites for each of these two dialects (accumulating to 100

websites for SASS preprocessor), in addition to 50 websites

for LESS.

In our analysis, we took into account the features of CSS

preprocessors which are common in almost all preprocessors.

These features include variables, nesting, mixin (i.e., function)

calls and the extend construct.

Overall, this paper makes the following main contributions:

• We conduct the first empirical study on the use of CSS pre-

processors and report our findings on 4 major preprocessor

language features. We plan to use these insights to design

refactoring/migration techniques for CSS and preprocessors.

• We make publicly available the dataset compiled from 150

websites to enable the validation and replication of our

study, and facilitate future research on CSS preprocessors.

We plan to use this dataset to evaluate the effectiveness and

accuracy of our refactoring/migration techniques.

The rest of this paper is organized as follows: In Section

II, we briefly introduce the reader to the features offered by

CSS preprocessors. In Section III, we present the design of the

empirical study that we conducted. In Section IV, we present

the findings of our study and discuss the lessons learned.

II. CSS PREPROCESSOR FEATURES

In this section, we briefly demonstrate some of the common

features of CSS preprocessors, which are widely used by

developers. All code examples are given in LESS; the other

CSS preprocessors use a similar syntax.

A. Variables

Supporting variables is one of the most basic features of

traditional programming languages, which is missing in CSS.

In preprocessors, variables can be defined to store one or more

style values, for instance @color: red (i.e., a single-value

variable), or @margin: 1px 2px 4px 3px (i.e., a multi-

value variable). Variables can be used for various purposes,

such as theming (i.e., one style sheet representing different

themes/colors).

Preprocessor variables are type-less; a value representing a

color value (e.g., #FF00FF) can be assigned to a variable

which currently stores a dimension value (e.g., 2px). Interest-

ingly, some preprocessors also let developers to manipulate

the value of variables by using arithmetic operators or by

passing them to preprocessor built-in functions (e.g., making

a color value darker using the darken() function in LESS).

Preprocessors also support the notion of variable scope. A

variable can be defined in the global scope (i.e., visible in the

entire style sheet), or in some local scope (i.e., visible inside

the body of a selector or mixin).

In Figure 2 (left), a piece of LESS code from the Semantic-

UI1 (version 1.6.2) is shown. The result of compiling this code

is shown in Figure 2 (right).

��������	
	�	�
�	���������	

���
���������	��
���	�
�������������
���������	������	��
�����
���
���
��	�������	����������	����
�������	�
����������	��
���	��
�������	��
����������	������	���
�
���

��	�������	����������	����
������	�
�������������
������	��
�����
�

Fig. 2. Variables in LESS

B. Nested rules

Preprocessors support a feature called nesting, which gen-

erates selectors using the following constructs in pure CSS:

Combinators make an existing selector B more specific, with

respect to another selector A. For instance, for selecting all

elements selected by B which are descendants of the ele-

ments selected by A, we can use the descendant combinator,

denoted as A B (with a space between the two selectors).

Likewise, we can select all elements of B which are direct

1Semantic-UI is a CSS library used for building adaptive user interfaces
for websites (https://github.com/Semantic-Org/Semantic-UI).

169

children of A using the child combinator (A>B), all elements

of B which have an element of A as a sibling using the general

sibling combinator (A~B), and all elements of B directly

preceded by a sibling element of A using the adjacent sibling

combinator (A+B).

Pseudo-Classes filter selectors. For instance, selector tr se-

lects all table rows, and we can add the pseudo-class :hover

to select all table rows when they are hovered by mouse

(tr:hover).

Pseudo-Elements represent abstract elements with respect to

real ones. For instance, p::first-line, selects the first

line of all paragraph elements (p) in the target document.

As a real example of nesting, in Figure 3 (left), a code

snippet from the Bootstrap CSS library2 (version 3.3.1) is

shown. The generated CSS code is shown in Figure 3

(right). As it can be observed, nesting avoids the repetition of

.navbar-toggle selector and organizes relevant selectors

in a hierarchical manner. The use of nesting leads to a more

organized code by keeping relevant selectors in the same

location. As we will see in Section IV, nesting is a very popular

preprocessor feature.

���������
��	
��
��

����
����
	����
�
���	
����������
�����
�����
�����
����
��	��
����
���
�����
�����
�������
�������
	�����	
���
�����������
!�
�����
������
!�
�����
��
����������"
!�
���
�����
�

���������
��	
��
���

����
����
	����
�
����	
����������
������
�
���������
��	
��
�����
���
��	��
����
�
���������
��	
����
�������
������
	�����	
���
����������
!�
����
������
!�
����
��
����������"
!�
�
���

��������	
	�	�
�	���������	

Fig. 3. Nesting selectors in LESS

C. Mixin calls

As it was mentioned earlier, pure CSS does not support

the notion of functions. CSS preprocessors have introduced

a specific construct, called mixin, to mimic the behavior of

functions. A mixin can be defined as a set of declarations, and

can be called inside other constructs (such as a selector or

another mixin). The construct in which the mixin is called will

include all the declarations of the called mixin. The declara-

tions inside a mixin may have parameterizable values, therefore

a mixin declaration can have parameters (just like a function

in traditional languages). These parameters are preprocessor

values, with the characteristics that were explained in Section

II-A. Arguments can be omitted, if default values are provided

in the parameter declarations of a mixin.

In Figure 4, a mixin is shown from the Bootstrap CSS

library. As shown in Figure 4, after compiling this code, the

declarations inside the mixin body appear in the selector .btn,

2The most famous CSS library which includes predefined classes for
facilitating designing complex multi-column, responsive web pages, designed,
used and maintained by Twitter (https://github.com/twbs/bootstrap)

��������	
	�	�
�	���������	

������
���	�	
��
�	�
	����
����
������	��������
���
�������
��������
	��
����������
������	��
��
	��
��	��
����
�����������	��
����		�
��	���
�����
��	���	��
��	��� 	��
��������	 �
��#	��
��
	�����	���
���# �
������������	��
�#	��
�����
$

������
���	�	
��
�	�
	����
����
������	��������
���
�����
��������
	��
��������
������	��
��
	��
��	��
��
�����������	��
����		�
��	���
�����
�����������	 �%�	���� 	��
����������������#	�����# �
���������������#	�&�
�����
$
���������	 �%'	������'	�����
�������������'����(���
�������������'
	��)�	����
�������������'������*��	��&���
��	���	��
�'	�����'	�����
��������	 �
�'����(��
��
	�����	���
�'
	��)�	����
������������	��
�'������*��	���
$

Fig. 4. Mixin in LESS

and the parameters are replaced with the arguments passed to

the mixin.

D. Extend construct

As we mentioned, one of the major concerns in developing

CSS is the inevitable duplication of declarations across dif-

ferent selectors. Pure CSS includes two main mechanisms to

avoid this kind of duplication:

• Creating classes. A set of declarations can be grouped

in a class selector, associated with a class name. Such

selector will select all the elements in the target document,

which have the same class name in their class attribute.

For instance, the selector .class1 can select the element

<div class="class1"> in the target document.

• Grouping selectors. A grouping selector consists of two or

more basic selectors (separated by a comma), which share

a set of declarations.

In CSS preprocessors, the extend construct is designed to play

the same role towards avoiding duplication. The name of this

construct was chosen to remind the extension feature of object-

oriented programming languages like Java. In other words,

the extend construct is used to “extend” the behavior of an

existing selector by adding more style rules, while inheriting

the existing style declarations from the extended selector.

When using the extend construct, the common declarations

are placed inside a grouping selector in the generated CSS

code.

Figure 5 (left) demonstrates the use of the extend construct

in a piece of code from the Flat-UI design framework3. The

compiled CSS code is shown in Figure 5 (right). As it is ob-

served, the selector which is extended (.dropdown-menu)

and the extending selector (.select2-drop) are grouped to

share some common declarations in the generated CSS code,

while the extra declarations appear in a separate selector.

3A design framework based on Bootstrap which includes a set of easy-to-
use predefined UI elements (https://github.com/designmodo/Flat-UI)

170

��������	

����������	
��
�

���

	
���
����
������

����
��
���
�

	���
������
����

���
�
��
�
��������
�

��
��
�������������	
����

���

�
�
�
�
� �
�
�
��
�

����
� �
!�

"
��
��
���
�

���
�

	�	�
�	���������	

����������	
��#
��
�
��������
�

	
���
����
������

����
��
���
�

	���
������
����

���
�
���
��
�
��������
�

���

�
�
�
�
� �
�
�
��
�

����
� �
!�

"
��
��
���
�

���
�

Fig. 5. Extending selectors in LESS

III. EXPERIMENT SETUP

In this section, we provide information about the subject

systems used in the study, as well as the process we followed

for collecting the experimental data.

A. Subject Systems

Within the context of this study, we focused on websites,

which make use of preprocessor languages and have their

preprocessor code publicly available. We have deliberately

avoided the analysis of preprocessor libraries and frameworks

(such as Bootstrap), because their code is meant to be used

externally by other projects, in the same way that public APIs

are used. Adding such libraries in our analysis would affect

negatively the validity of this study, since a large number

of mixin declarations developed to be used externally, would

appear as not being used at all (i.e., unreachable or dead code).

Therefore, we decided to focus on websites having their own

internal preprocessor codebase, and study them in isolation

from potential external dependencies.

While it is not necessary for websites to make their pre-

processor codebase publicly available to the end users, some

web developers intentionally upload the preprocessor code

along with the generated CSS code on the web. This might

be done to enable the compilation of the preprocessor code

on demand (either on the server- or client-side). We used

Google’s advanced search feature to find these preprocessor

files. Particularly, we searched the Internet for files with the

extensions *.less, *.scss and *.sass. This search query

allowed us to find websites satisfying our selection criteria:

1) the website should have its CSS code generated by LESS

or SASS/SCSS, and

2) the website should publicly provide its preprocessor code

along with the generated CSS code.

When we found a preprocessor file on a website, we

manually attempted to extract the contents of the file’s parent

directory. If this directory was accessible, we collected all the

preprocessor files inside it, and recursively all the preprocessor

files inside its sub-folders. This was necessary to make sure

that all the files which are imported using the @import

directive are also collected. Then we manually found and

marked the main Style Sheet files, i.e., the files that are passed

to the preprocessor compiler to get the generated CSS files.

This step is crucial, as we start our analysis from these main

files and recursively parse and analyze the files which are

imported from them.

More specifically, we collected 1266 preprocessor files,

containing 255 LESS, 427 SASS, and 584 SCSS files. Due

to space limitations, we do not include the full list of the

website names and URLs in the paper, but we have made

this list and the collected files available online4. In Figure 6,

we have included box and bean plots of various size metrics

for the collected files in logarithmic scale. Bean plots are

useful for presenting the distribution of data. As it is observed,

the examined LESS, SASS and SCSS files have similar size

characteristics.

Less Sass SCSS

1.
79

0.
02

0.
2

20
11

8.
81

(a) Size (KB)

Less Sass SCSS

20
1

8
20

0
91

6

(b) #Selectors / file

Less Sass SCSS

41
0

10
50

0
24

86

(c) #Declarations / file

Fig. 6. Characteristics of the analyzed preproecssor files

B. Data Collection

After collecting the preprocessor files, we applied the fol-

lowing process. First, we parsed each preprocessor file to

obtain its Abstract Syntax Tree (AST). For parsing, we used

the corresponding compilers for LESS and SASS/SCSS. The

LESS compiler is originally written in JAVASCRIPT, but we

used a Java implementation of this compiler, called Less4j. For

SASS/SCSS, we used the original compiler written in Ruby.

In both cases, we developed additional code for querying the

ASTs. The results of the queries were exported to CSV files for

further statistical analysis. In Table I, we provide an overview

of the collected data in the subject systems. We will refer to

this table in Section IV and discuss the numbers in more detail.

For each examined preprocessor feature we create a separate

CSV file. Every CSV file contains the website name, the

preprocessor file name, and the line number in which a partic-

ular AST element (e.g., variable declaration, mixin declaration,

mixin call) was found. According to the specific characteristics

of the AST element type, we include the following additional

information in the corresponding CSV file:

1) For variable declarations, we include

a) the scope of the variable (global or local scope)

b) the type of the value stored in the variable. This type

can take one of these possible values: color, number,

identifier, string, function call, and “other” for all other

types of values, as discussed in Section IV-A

2) For mixin calls, we include

a) the name of the called mixin

b) the total number of arguments passed to the mixin

4http://bit.ly/1ZgarwZ

171

3) For mixin declarations, we include

a) the name of the mixin

b) the number of times the mixin is called

c) the number of its parameters

d) the number of declarations which directly or indirectly

(i.e., using nesting) exist inside the body of the mixin

e) the number of declarations in the body of the mixin

which use at least one of the parameters of the mixin

f) the number of declarations styling vendor-specific

properties (e.g., -webkit-column-gap for Chrome

and Safari, -moz-column-gap for Firefox)

g) the number of distinct parameters which are used for

two or more different property types (e.g., a parameter

used for styling the top and margin properties)

h) the number of declarations using only hard-coded (i.e.,

literal) values

i) the number of vendor-specific property declarations

which share at least one of the mixin’s parameters

4) For nesting, we include

a) the name of the selector

b) the number of base selectors it consists of (e.g., the

grouped selector H1, A > B consists of two base

selectors, namely H1 and A > B)

c) the number of combinator selectors in the list of its

base selectors (the presence of a combinator selector

indicates a missed nesting opportunity)

d) the name of its parent selector

5) For each use of the extend construct, we include the target

selector which is extended.

TABLE I
OVERVIEW OF THE COLLECTED DATA

LESS SASS SCSS

Websites 50 50 50
Files 255 427 584
Avg. # selectors / file 57 52 40
Avg. # defined variables / file 16 14 16

Avg. # nesting usages / file† 43 44 35
Avg. # mixin calls / file 11 6 12
Avg. # mixin declarations / file 4.7 4.7 3.7
Avg. # extend construct usages / file 0 5.2 5
Avg. # calls to parameterless mixins / file 8 4 6

† Includes all selectors which were nested under another selector, or had
at least one selector nested under them.

In order to count the number of times a mixin is called, we

analyze the CSV file containing the mixin calls in order to

extract the number of calls having the same name with that

of the mixin declaration. If multiple mixin declarations have

the same name (i.e., mixins with an identical name declared in

different preprocessor files), then we count only the number

of calls having the same name and belonging to the same file

with that of the mixin declaration.

IV. EMPIRICAL STUDY

In this study, we investigate the use of the following

preprocessor features: variables, nesting, mixin calls and ex-

tend constructs. Targeting the goals mentioned in Section I

(developing better migration and refactoring recommendation

systems and giving feedback to preprocessor language design-

ers), we attempt to answer the following research questions:

RQ1 How do developers use variables in preprocessors?

We aim at investigating whether developers have a particular

preference to global or local scope variables, and the types

of style values stored in the variables.

RQ2 Are developers using nesting whenever possible?

We are going to investigate whether developers use nesting

in every possible situation, or only when the benefits to

maintainability are stronger (e.g., in deep hierarchies of

elements).

RQ3 How and why do developers use mixins?

For mixins, several dimensions will be investigated, namely:

a) Are mixins created to be reused in a style sheet?

b) Do mixins tend to have a large number of parameters?

c) Are mixin parameters reused in multiple style properties?

d) What is the nature of declarations inside the body of mix-

ins? For instance, do developers use mixins for grouping

a set of related declarations (e.g., declarations which style

the same property for different web browsers)?

RQ4 Are developers using the extend construct whenever

possible?

Given the fact that an extend construct can be used in place of

a parameterless mixin (because they are both used to remove

duplication of declarations), we are going to investigate

whether developers have a preference to use parameterless

mixins over extend construct or vice versa.

In the following subsections, we answer the abovementioned

research questions.

A. Variables

We investigate whether developers declare variables in the

global scope (i.e., for the entire style sheet), or they mostly

prefer local variables (e.g., inside a mixin). Gaining such

knowledge can be beneficial in devising migration or refactor-

ing techniques, because, as mentioned before, variables can be

used to store one or more style values repeated across different

selectors, and thus facilitate the maintainability of the code.

Therefore, a migration (or refactoring) algorithm can detect

such value-level duplications in pure CSS (or preprocessor

code) and suggest the introduction of appropriate variables.

Based on our empirical findings, we can align the refactoring

recommendations with the practices which are more com-

monly applied by the developers, when there are multiple

alternative Introduce-Variable refactoring opportunities in the

local or global scope.

TABLE II
SCOPE OF VARIABLES

Global (%) Local (%) Total

LESS 956 (95.79) 42 (4.21) 998
SASS 917 (84.67) 166 (15.33) 1,083
SCSS 1,387 (88.34) 183 (11.66) 1,570

Total 3,260 (89.29) 391 (10.71) 3,651

172

As shown in Table II, out of 3,651 total variable declarations

in the dataset, there are 3,260 global variables (89.29% of the

total variable declarations). On the other hand, only 10.71%

of the variable declarations are in the local scope (note that

we do not count mixin parameters as variable declarations).

This clearly shows a preference of the developers to define

variables in the global scope.

In addition, we are interested in understanding the types of

the values stored in the variables. We categorized all possible

value types that are allowed in preprocessors, as shown in

Table III, and counted the instances of the variables belonging

to each category.

TABLE III
CATEGORIZATION OF VALUE TYPES

Category Value type Example

Number

angle 45deg

integer -13

length 18px

number 4.01

percentage 50%

resolution 72dpi

time 5ms

number function floor()

Color

named color red

hex color #FF00FF

color function rgb(50, 0, 0)

Identifier
user-defined nice-animation

CSS keyword top

String
Unicode string enclosed in " " or ‘ ’ "Concordia"

string function replace()

Function call excluding number, color, string functions svg-gradient()

URL resource path, using the url() function url()

Expression expression involving other variable(s) @opac1+0.2

List any of the above solid 1px red

In Figure 7, we have demonstrated the percentage of

variable instances in each value category, for each of the

analyzed preprocessors. As it can be observed, most of the

variable declarations are used for color values. This accounts

for 45.98% of all variables defined in the three datasets. Values

in this category consist of named and Hexadecimal colors,

in addition to color functions, such as rgb() and rgba().

This observation shows that variables are mostly used for

facilitating the modifications to the theme of web pages (i.e.,

same structural layout with different color themes).

As it can be observed in Figure 7, there is a considerable use

of expressions for the initialization of preprocessor variables.

These expressions are either direct references to previously

defined variables, or mathematical expressions manipulating

the values of existing variables (e.g., @opac2: @opac1 +

0.2). In this way, the preprocessor developers can easily

modify existing themes and layouts.

It should be mentioned that, there was one file in the

SASS dataset in which the developer used variables for all

the declarations defined in the file. This practice is definitely

uncommon in developing CSS preprocessor code, and it can

negatively affect the results of this study by changing the

number of times a certain value type is used. Thus, we

excluded this single file from this specific analysis for counting

variable types.

Color Number Identifier List Function String Url Expression

Less Sass SCSS

54.7

34.8

46.4

19.1

15
17.3

2

10.8
12

3.5
6.1 7.1

0.1

7.5

3.4
1.7

6.7

2.4
0.9

3.2

0.4

17.9
15.9

11.1

0
5

15
25

35
45

55

Fig. 7. Variable types distribution (numbers represent percentages)

�

�

�

�

RQ1 Conclusions: Developers mostly declare global

variables (89.29% of the variable declarations have a

global scope), and especially variables storing color values

(45.98% of the variable declarations have a color value).

Hence, any migration/refactoring technique should rank

higher the suggestions that introduce variables for identical

values across different selectors and mixins, leading to the

introduction of global variables. Recommendations can also

be prioritized based on the types of the involved values,

giving higher priority to those involving color values.

B. Nesting

In this subsection, we examine how developers take advan-

tage of nesting in preprocessors. Our investigation shows that

nesting is a construct that is widely used by the developers.

In Table IV, we present the collected data for nesting usage in

the three subject preprocessors.

TABLE IV
USE OF NESTING

LESS SASS SCSS Total

All Selectors 12,390 18,555 18,242 49,187
Selectors involved in nesting 6,481 13,370 10,269 30,120
Potential nesting opportunities 2,685 1,939 3,861 8,485
All nestable Selectors 9,166 15,309 14,130 38,605

As it can be observed in this table, out of all 49,187 se-

lectors, there were 38,605 selectors which were either already

nested or could be potentially nested. Out of this number, there

were 30,120 selectors (78.02%), which were actually involved

in some nesting hierarchy, i.e., they had at least one selector

nested under them, or were nested under another selector. On

the other hand, in the whole dataset, there were 8,485 selectors

which could be nested, but developers did not apply nesting

for them. These selectors are basically combinators, pseudo-

classes, and pseudo-elements (Section II-B), which can be

refactored to take advantage of nesting.

To gain more knowledge about nesting practices, we also

investigated the nesting depth in preprocessor files. We define

the nesting depth of selector s, which is nested under selector

p, as the depth of selector p plus one. The depth of a top-

level selector (i.e., a selector which has no parent in the nesting

hierarchy) is equal to zero.

173

Figure 8 demonstrates the box plots along with the violin

plots (for exhibiting the distribution of values) for the nesting

depth of selectors in the examined style sheets. As it can be

observed, the median of the nesting depth is 2 in all three

datasets (for the SCSS dataset, the third quartile is the same

as the median, both equal to 2). This means that, in half of the

cases, selectors are nested only one or two levels deep, which

is a clear indicator that developers prefer to nest selectors even

for very shallow nesting hierarchies.

SCSS

Sass

Less

1 2 3 4 5 6 7 8 9 10

Fig. 8. Nesting depth

�

�

�

	

RQ2 Conclusions: nesting is a very popular preprocessor

feature that is widely used by the developers (78.02% of

the selectors are nested), even in very shallow nesting

hierarchies consisting of one or two levels. Given this re-

sult, any migration/refactoring technique should support

the recommendation of nesting refactoring opportunities,

wherever it is possible.

C. Mixins

We examined the use of preprocessor mixins, taking into

account four different dimensions.

1) Number of mixin calls: Our goal is to understand

whether mixins are created to be reused (i.e., called by

multiple selectors or other mixins), or whether they are created

to decompose selectors by extracting a subset of relevant

declarations from them (i.e., called by only one selector). In

the former case, mixins are used to eliminate duplication of

declarations in the CSS code.

For answering this question, first we counted the mixin calls

for each mixin declaration. As shown in Figure 9, the median

value for number of times each mixin is called is 2 for LESS

and SASS, and 3 for SCSS. Overall, we found out that 63%

of the mixins are called more than once.

2 72

SCSS

Sass

Less

1 2 5 82 753 382

Fig. 9. Number of mixin calls

In addition, we applied the Wilcoxon signed-rank test on

the paired samples of the numbers of mixins being called just

once and of those being called more than once in each website

with the following null hypothesis: “the number of mixins

being called once is larger than the number of mixins being

called more than once”. The null hypothesis was rejected with

significance at 95% confidence level (p-value = 0.00003), and

thus we can conclude that the mixins being called more than

once are more than the mixins being called only once.

There were some interesting cases that we found during the

analysis of the results. In the SCSS dataset, there was a mixin

which was called 382 times. Closer investigation revealed that

this case was a mixin which was used for generating selectors

having different Media Queries [12]. Media Queries provide

the possibility of defining alternative styles for different media,

e.g., a high-resolution monitor, or the display of a mobile

device. It turned out that the developer called this mixin inside

the majority of the selectors to avoid the effort needed to

rewrite the complete Media Query declaration. On the other

hand, in the SASS dataset, there was a website for which

designers used the same animation for several elements in the

web pages. Consequently, 75 mixin calls referred to a mixin

which included style declarations for these animations. Finally,

the maximum number of calls to a mixin in the LESS dataset

was 72, which occurred for a mixin that was used for defining

the size of fonts in the target documents. In other words, this

mixin was called whenever a font-size was to be defined.

These cases essentially show that mixins can be employed a

wide range of purposes when developing style sheets.

2) Size of mixins: We counted the declarations which were

placed directly or indirectly inside each mixin, as a measure

for mixins size. By indirectly, we refer to the declarations

which belong to selectors being nested under the examined

mixin. Here, the goal is to investigate whether developers tend

to keep mixins short, similar to what is suggested for their

counterparts in traditional programming, i.e., functions. As

shown in Figure 10, the median of the number of declarations

is 3 in all three datasets. Further analysis shows that only 20%

of the mixins include more than 5 declarations in the whole

dataset, suggesting that developers mostly prefer to develop

mixins having 5 declarations or less.
68

SCSS

Sass

Less

1 2 3 5 4848

Fig. 10. Number of property declarations inside mixins

3) Number of parameters: We are also interested to investi-

gate whether mixins tend to have a large number of parameters

or not. As it is exhibited in Figure 11, the median value

for the number of parameters in mixin declarations is equal

to one in all datasets. We further found that 68% of the

mixins have either one or no parameters. The difference in

the number of declarations inside mixins and the number of

mixin parameters possibly shows that, in most of the cases,

174

mixins either have hard-coded values for the majority of the

properties defined inside their body, or their parameters are

reused in multiple property declarations. We will investigate

the reuse of parameters in the next subsection.

0 1 2 6

SCSS

Sass

Less

0 1 2 6 15
Fig. 11. Number of mixin parameters

4) Parameter reuse: We attempted to examine the hypoth-

esis that parameters are reused in multiple declarations. We

should first note that style properties in CSS are divided into

two categories:

1) Properties which are common across different web

browsers;

2) Properties which are specific to one web browser (i.e.,

vendor-specific properties).

As an example, to style font size in different browsers,

one will only need to define the font property. On the

other hand, when styling the border-radius property, the

developer would need to define a different property for each

web browser; for instance, -webkit-border-radius for

Google Chrome or Safari and -moz-border-radius for

Mozilla Firefox. Otherwise, the presentation of the target

documents will differ across different web browsers. As a

result, mixins can serve as a solution for grouping vendor-

specific properties. In this situation, the same mixin parameter

would be reused across different declarations corresponding

to vendor-specific properties. An example of such a case is

depicted in Figure 12.

���������	�
����
�������
������������������
����
�	�
�����
���������������
����
�	�
�����
����������
����
�	�
�����
�

Fig. 12. Parameter reuse across vendor-specific properties

Vendor-specific properties can be easily distinguished by ex-

amining whether the property name starts with one of the pre-

defined prefixes by Word Wide Web Consortium (W3C) [13].

Our investigation showed that 42% of the mixins are used for

grouping declarations associated with vendor-specific proper-

ties. When a mixin has at least one set of vendor-specific

properties, on average only 6.6% of the declarations inside

that mixins are not related to a vendor-specific property. As for

parameter reuse, it turned out that 88.81% of the declarations

associated with vendor-specific properties shared at least one

of the mixin’s parameters. This indicates excessive amount of

parameter reuse for vendor-specific properties. On the other

hand, on average 19% of the mixins parameters were reused

across properties which did not style the same property in the

target documents (for instance, the variable @w is used both for

margin and padding properties). This demonstrates that

parameter reuse is also taking place for non-vendor-specific

properties, although to a much smaller extent.

�

�

RQ3 Conclusions: Two thirds of the mixins are reused

two or more times. Given that, any migration/refactoring

technique should suggest extracting mixins even when

there is a small number of selectors sharing the same set of

declarations (i.e., to avoid declaration-level duplication). In

addition, such a technique should rank higher the sugges-

tions which have small number of parameters (i.e., small

number of differences in property values), and include

declarations for vendor-specific properties. Moreover, the

preprocessor language designers should consider creating

built-in mixins for vendor-specific properties, because a

considerable amount of mixins (42%) are used for styling

this kind of properties.

D. Extend Construct

Finally, we examine the usage of the extend construct.

As mentioned in Section II, the extend construct is used

to eliminate declaration-level duplication, similar to mixins.

While mixins can have parameterized declarations in their

body (in contrast to the extend construct), a parameterless

mixin may be thought to have the same use as the extend

construct. However, one should note that these constructs will

result to different CSS code. A use of the extend construct will

compile to a grouping selector (as shown in Figure 5), while

the code inside a mixin will be duplicated in the generated

CSS code in all the places where the mixin is called. In

other words, the use of mixins introduces duplication in the

generated CSS code; consequently, the developer may be

tempted to use the extend construct over parameterless mixins.

On the other hand, when using the extend construct, the

preprocessor compiler places the resulting grouping selector

in the position of the selector being extended in the generated

CSS code (Figure 5). This changes the relative order of the

selectors in the style sheet, which may result in changing

the presentation semantics of target documents. This happens

because there is a dependency between two selectors which

select the same element in the target document and style

the same property. For instance, if two selectors style the

border-color of an img element in the target document,

this element will get the border color from the selector which

appears later in the style sheet file. As a result, developers

should take extra caution when using the extend construct,

and make sure that these kind of dependencies (i.e, the order

dependencies [5]) will not break. This might be a factor that

makes developers reluctant to use the extend construct.

As shown in Table I, on average there were around 5

usages of the extend construct per file, in the SASS and SCSS

datasets (in total 204 and 676 usages, respectively). At the

same time, we did not find any use of the extend construct

in the LESS dataset. This could be justified by the fact that

the extend construct was more recently introduced in the LESS

175

preprocessor (version 1.4 released in June 2013), so developers

might have not started yet using this feature in a systematic

way.

On the other hand, we observed that the average number

of calls to parameterless mixins in each file is 8, 4 and 6,

respectively for LESS, SASS and SCSS datasets (Table I).

The higher value for the LESS dataset might be explained

from the fact that developers did not use the extend construct

as an alternative solution, because it was not supported by the

LESS preprocessor until recently.

For the SASS and SCSS datasets where developers used the

extend construct, we conducted further analysis to understand

if there is any preference for using extend construct over

the parameterless mixin or vice versa. Figure 13 displays

the Venn diagrams showing the percentage of the websites

(out of the total number of websites in the corresponding

dataset) which only used one of the constructs or both of them

(the overlapping area). As it can be observed, both in SASS

(Figure 13a) and SCSS (Figure 13b) datasets, the websites

that used only parameterless mixins outnumber the ones which

used only the extend construct.

Figure 13c shows the Venn diagram for both SASS and

SCSS datasets combined together including 100 websites in

total. We can clearly see that developers have a preference

to parameterless mixins over extend, since in 28% of all

websites they exclusively used parameterless mixins, while

in only 9% of all websites they exclusively used the extend

construct. Therefore, we may conclude that developers mostly

tried to avoid the caveats associated with the extend construct,

while accepting the duplication in the generated CSS code

resulting from the use of parameterless mixins. Nevertheless,

previous research showed that declaration-level duplication

in the generated CSS code can be safely refactored and

eliminated in some cases [5], and thus parameterless mixins

could be replaced with the extend construct.

��� ������

�����			�
	���
����

��		��

(a) SASS

��� �����

��	�
���	
���������

������

(b) SCSS

��� �����

��	�
���	
���������

������

(c) Combined

Fig. 13. Percentage of websites using extend or parameterless mixins

�

�

�

�

RQ4 Conclusions: Developers tend to prefer using param-

eterless mixins over the extend construct, possibly because

mixins do not affect the presentation semantics of the target

documents. As a result, any migration/refactoring tech-

nique should give higher priority to opportunities introduc-

ing parameterless mixins, especially when the alternative

solution using the extend construct cannot guarantee that

the presentation of the target documents will be preserved.

The preprocessor compilers can be enhanced to warn

developers about potential styling bugs caused by the

incautious use of the extend construct.

V. THREATS TO VALIDITY

For minimizing the threats to the external validity of this

study, we selected two CSS preprocessors which are known

to be the most widely used by web developers [10], namely

LESS and SASS. Additionally, we used the two dialects that

SASS preprocessor supports (SASS and SCSS). Moreover, to

make the results of the study as generalizable as possible,

we examined 150 websites from a wide range of application

domains.

To avoid selection bias, we included in the list of subjects

the top-50 websites for each preprocessor language/dialect, as

returned by the Google search engine. As a result, the authors

of the paper were not involved in any kind of selection process.

To support the reliability of the study, we have made

available the artifacts, which are necessary for replicating

the experiment. These include the preprocessor files that we

collected, the code we implemented for parsing LESS and

SASS/SCSS files and querying their ASTs, the CSV files

resulting from querying the ASTs, and the R scripts that we

developed for the statistical analysis.

VI. RELATED WORK

To the best of our knowledge, this is the first empirical

study on the use of CSS preprocessors. As mentioned before,

we conducted this study to gain more knowledge about how

developers utilize CSS preprocessors with the ultimate goal

of designing a migration/refactoring recommendation system

that migrates pure CSS code to preprocessors, as a means to

improve the maintainability of existing CSS code.

There are a few works in the literature focusing on the

quality, and improving the maintainability of CSS code. Keller

and Nussbaumer [14] compared human-written to machine-

generated CSS code and conclude that the former has a higher

abstractness (i.e., higher reusability) compared to generated

code. Serrano [6] proposed HSS, a preprocessor for CSS sup-

porting all features discussed in this paper with the exception

of nesting. Since HSS has not been adopted by the industry,

we did not use any websites using HSS as subjects in our

empirical study.

Mesbah and Mirshokrae [15] developed an automated tech-

nique for detecting dead code (i.e., unused selectors) in

CSS, which analyzes the runtime relationship between the

CSS rules and DOM elements of dynamic web applications,

and detects unmatched and ineffective selectors, overridden

declaration properties, and undefined class values. Genevès et

al. [16] pursued the same goal using static analysis and tree

logics to detect unused CSS code.

In our previous work, we proposed a technique for safely

refactoring CSS by detecting different kinds of declaration-

level duplications, and eventually reducing the size of the

CSS files [5]. As an alternative approach for eliminating the

duplication of declarations, we can extract mixins or apply the

extend construct in the preprocessor code, as we discussed

in this paper. Bosch et al. [17] introduced an approach for

reducing the size of CSS files by removing redundant style

176

declarations and rules based on static analysis. A migra-

tion/refactoring technique can also take advantage of the work

by Bosch et al. to recommend opportunities for removing

unnecessary code in CSS and/or preprocessor code.

In the literature, there are several empirical studies on the

use of language features in different languages and tech-

nologies with similar goals to this paper, e.g., understanding

how developers have adopted these language features. For

instance, Ernst et al. [18] investigated how C preprocessors

are used in practice, by conducting an empirical study on 26

publicly available C programs, using a tool which includes

approximate, Cpp-aware parsers for expressions, statements,

and declarations. Tempero et al. [19] studied the use of

inheritance in Java programs. They used different metrics,

such as Depth of Inheritance, extracted from the bytecode of

the subject systems for their analysis. Grechanik et al. [20]

conducted a large-scale study on the use of object-oriented

features including classes, methods, fields and conditional

statements on 2000 open-source Java projects. They repre-

sented the information about the source code in a relational

database and used SQL to extract the required metrics about

different features. Gil and Lenz [21] conducted an empirical

study on how Java developers take advantage of method

overloading in 99 open source Java programs. Similar to [19],

they also used bytecode for data collection. Xiaoyan et al. [22]

investigated the frequency of different statement types (e.g.,

if, return, function declarations) in 311 projects written

in C, C++ and Java. They extracted this information from

an XML representation (i.e., srcML) of the source code of

subject systems. Dyer et al. [23] conducted a very large-

scale study on 31K open-source Java projects to find usages

of new Java language features over time. This is done on

the Abstract Syntax Tree (i.e., AST) of the source code of

the subject systems. Richards et al. [24] studied the use of

dynamic language features in JAVASCRIPT applications, using

an instrumented web browser. Callaú et al. [25] conducted an

empirical study on the use of the reflection feature in 1000

Smalltalk projects by statically tracing the features being used

from the AST of the source code. Martin et al. [26] examined

the use of GNU Make’s language features (such as functions,

macros, lazy variable assignments and the Guile embedded

scripting language) in around 12k make files of 250 open

source projects. They used TXL to define a custom grammar

for Makefiles to extract and count instances of features. In

our analysis, we used the AST of the parsed preprocessor

files to extract the required information, similar to other works

including [25], [23].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we examined the preprocessor codebase

of 150 websites to investigate the usage patterns of four

language features, namely variables, nesting, mixins and ex-

tend constructs. We found out that developers frequently

use all these features whenever possible, and gained some

valuable knowledge which certainly can help us in devising

migration/refactoring techniques and providing feedback to the

preprocessor language designers. In summary the take-home

messages of the study are:

1) Developers have a clear preference to global variables

(89.28% of the variable declarations have a global scope),

and especially variables storing color values (45.98% of

the variable declarations have a color value).

2) Developers widely use the nesting feature (78% of the

selectors are nested), even in very shallow nesting hier-

archies consisting of one or two levels.

3) Developers tend to reuse mixins (63% of the mixins are

called two or more times). They also tend to create mixins

with a small number of parameters (68% of the mixins

have either one or no parameters), and a relatively small

size (80% of the mixins include 5 or less declarations).

Finally, 42% of the mixins are used for styling vendor-

specific properties.

4) While both parameterless mixins and the extend construct

can be used to eliminate declaration-level duplication in

the preprocessor code, developers tend to prefer using

parameterless mixins to avoid the caveats associated with

the extend construct.

While the gained knowledge in this paper is valuable for

future research, we acknowledge the need for a qualitative user

study with real-world developers, for triangulating the results

of our quantitative study. Unfortunately, as the websites which

have been investigated in this paper were collected using a

web search engine (Google), we did not have access to the

developers of the analyzed preprocessor files. Moreover, we

anticipate that such qualitative study would require even more

analysis and in-depth discussion, for each of the analyzed

preprocessor features, which would be certainly beyond the

space limitations of this paper. Ideally, we would replicate the

same study on the preprocessor code collected from projects

hosted on repository hosting websites (e.g., Github), and

augment the results with qualitative data collected from their

developers. We leave such a study for future work.

Another interesting possible future research direction is

to study the evolution trends in preprocessor codebases. To

this end, we aim at studying the history of the open-source

preprocessor libraries and frameworks (such as Bootstrap)

to investigate developer practices in refactoring preprocessor

code. This can help us in designing refactoring techniques

which are aligned with the developer needs. Moreover, as

mentioned before, the lessons learned in this study provide

us insights for devising techniques to automatically migrate

existing CSS code to preprocessor code. As the next step, we

are planning to develop such a technique that will be available

in the form of a plug-in for a state-of-the-art IDE.

ACKNOWLEDGMENT

This research was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC), the

Fonds de Recherche du Québec – Nature et Technologies

(FRQNT), and the Faculty of Engineering and Computer

Science at Concordia University.

177

REFERENCES

[1] World Wide Web Consortium. CSS specifications. http://www.w3.org/
Style/CSS/current-work.

[2] Mozilla Developer Network, “Web developer survey research,” https://
hacks.mozilla.org/2010/11/its-all-about-web-developers/, Mozilla, Tech.
Rep., 2010.

[3] Web Technology Surveys. Usage of CSS for websites. http://w3techs.
com/technologies/details/ce-css/all/all.

[4] H. W. Lie and B. Bos, Cascading Style Sheets: Designing for the Web,
3rd ed. Boston, MA, USA: Addison-Wesley Professional, 2005.

[5] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering Refactoring
Opportunities in Cascading Style Sheets,” in Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), 2014, pp. 496–506.

[6] M. Serrano, “HSS: A Compiler for Cascading Style Sheets,” in Proceed-

ings of the 12th International ACM SIGPLAN Symposium on Principles

and Practice of Declarative Programming (PPDP), 2010, pp. 109–118.

[7] H. Catlin. SASS: Syntactically Awesome Style Sheets. http://sass-lang.
com/.

[8] A. Sellier. LESS - The dynamic stylesheet language. http://lesscss.org/.

[9] Google Inc., “Google Closure Tools,” https://developers.google.com/
closure.

[10] C. Coyier. Popularity of CSS Preprocessors.
http://css-tricks.com/poll-results-popularity-of-css-preprocessors/.

[11] U.S. General Services Administration, “CSS coding styleguide,” https:
//pages.18f.gov/frontend/css-coding-styleguide/preprocessor/.

[12] “Media Queries,” http://www.w3.org/TR/css3-mediaqueries/, World
Wide Web Consortium, Tech. Rep., June 2012.

[13] “Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification,
Assigning property values, Cascading, and Inheritance,” http://www.w3.
org/TR/CSS21/syndata.html, World Wide Web Consortium, Tech. Rep.,
June 2011.

[14] M. Keller and M. Nussbaumer, “CSS code quality: a metric for abstract-
ness; or why humans beat machines in CSS coding,” in Proceedings

of the 7th International Conference on the Quality of Information and

Communications Technology (QUATIC), 2010, pp. 116–121.

[15] A. Mesbah and S. Mirshokraie, “Automated analysis of CSS rules
to support style maintenance,” in Proceedings of the International

Conference on Software Engineering (ICSE), 2012, pp. 408–418.

[16] P. Genevès, N. Layaïda, and V. Quint, “On the analysis of cascading
style sheets,” in Proceedings of the 21st International Conference on

World Wide Web (WWW), 2012, pp. 809–818.

[17] M. Bosch, P. Genevès, and N. Layaïda, “Automated refactoring for
size reduction of css style sheets,” in Proceedings of the 2014 ACM

Symposium on Document Engineering (DocEng), 2014, pp. 13–16.

[18] M. D. Ernst, G. J. Badros, and D. Notkin, “An Empirical Analysis of C
Preprocessor Use,” IEEE Transactions On Software Engineering, vol. 28,
no. 12, 2002.

[19] E. Tempero, J. Noble, and H. Melton, “How Do Java Programs Use
Inheritance? An Empirical Study of Inheritance in Java Software,” in
Object-Oriented Programming (ECOOP), ser. Lecture Notes in Com-
puter Science, 2008, vol. 5142, pp. 667–691.

[20] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi, “An Empirical In-
vestigation into a Large-scale Java Open Source Code Repository,” in
Proceedings of the 2010 International Symposium on Empirical Software

Engineering and Measurement (ESEM), 2010, pp. 1–10.

[21] J. Gil and K. Lenz, “The use of overloading in java programs,” in Object-

Oriented Programming (ECOOP), ser. Lecture Notes in Computer
Science, 2010, vol. 6183, pp. 529–551.

[22] X. Zhu, E. J. Whitehead, C. Sadowski, and Q. Song, “An analysis of
programming language statement frequency in c, c++, and java source
code,” Software: Practice and Experience, vol. 45, pp. 1479–1495, 2014.

[23] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining Billions
of AST Nodes to Study Actual and Potential Usage of Java Language
Features,” in Proceedings of the 36th International Conference on

Software Engineering (ICSE), 2014, pp. 779–790.

[24] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in Proceedings of the 31th

ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2010, pp. 1–12.

[25] O. Callaú, R. Robbes, E. Tanter, and D. Röthlisberger, “How Developers
Use the Dynamic Features of Programming Languages: The Case of
Smalltalk,” in Proceedings of the 8th Working Conference on Mining

Software Repositories (MSR), 2011, pp. 23–32.
[26] D. H. Martin, J. R. Cordy, B. Adams, and G. Antoniol, “Make It Simple

- An Empirical Analysis of GNU Make Feature Use in Open Source
Projects,” in Proceedings of the 23rd IEEE International Conference on

Program Comprehension (ICPC), 2015.

178

